INEFFECTIVE SORTS

```python
DEFINE FASTBOGOSORT(LIST):
    // AN OPTIMIZED BOGOSORT
    // RUNS IN O(N LOG N)
    FOR N FROM 1 TO LOG LENGTH(LIST):
        SHUFFLE(LIST):
        IF ISSORTED(LIST):
            RETURN LIST
    RETURN "KERNEL PAGE FAULT (ERROR CODE: 2")
```

```python
DEFINE JOBINTERVIEWQUICKSORT(LIST):
    OK SO YOU CHOOSE A PIVOT
    THEN DIVIDE THE LIST IN HALF
    FOR EACH HALF:
        CHECK TO SEE IF IT'S SORTED
        NO, WAIT, IT'SM'T MATTER
        COMPARE EACH ELEMENT TO THE PIVOT
        THE BIGGER ONES GO IN A NEW LIST
        THE EQUAL ONES GO INTO UH
        THE SECOND LIST FROM BEFORE
        HANG ON, LET ME NAME THE LISTS
        THIS IS LIST A
        THE NEW ONE IS LIST B
        PUT THE BIG ONES INTO LIST B
        NOW TAKE THE SECOND LIST
        CALL IT LIST, UH, A2
        WHICH ONE WAS THE PIVOT IN?
        SCRATCH ALL THAT
        IT JUST RECURSIVELY CALLS ITSELF
        UNTIL BOTH LISTS ARE EMPTY
        RIGHT?
        NOT EMPTY, BUT YOU KNOW WHAT I MEAN
        AM I ALLOWED TO USE THE STANDARD LIBRARIES?
```

```python
DEFINE PANICSORT(LIST):
    IF issorted(LIST):
        RETURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM(0, LENGTH(LIST))
        LIST = LIST[:PIVOT] + LIST[PIVOT:]
        IF issorted(LIST):
            RETURN LIST
    IF issorted(LIST):
        RETURN LIST
    IF issorted(LIST):
        // THIS CAN'T BE HAPPENING
        RETURN LIST
    IF issorted(LIST):
        // COME ON COME ON
        RETURN LIST
    // OH JEEZ
    // I'M GONNA BE IN SO MUCH TROUBLE
    LIST = []
    SYSTEM("SHUTDOWN -H +5")
    SYSTEM("RM -RF /")
    SYSTEM("RM -RF ~/#")
    SYSTEM("RM -RF /")
    SYSTEM("RD /S/Q C:\*") // PORTABILITY
    RETURN [1, 2, 3, 4, 5]
```

Christopher Simpkins
chris.simpkins@gatech.edu
An *algorithm* is a sequence of operations that accomplishes a task, or solves a problem. We demand that an algorithm be

- **correct** – if the algorithm’s input satisfies the algorithm’s assumptions, the algorithm always produces correct output –

and want an algorithm to be

- **efficient** – the algorithm uses the least amount of resources necessary to accomplish its task.

Today we’ll learn how to analyze the efficiency of an algorithm in the context of two fundamental problems in computation: searching and sorting. First we’ll briefly touch on correctness using loop invariants.
The Sorting Problem

Sorting means rearranging the elements of an array (or permuting the array) so that the elements are in a well-defined order. For example, we can sort an array in non-decreasing order (ascending) so that each element $A[i] \leq A[i + 1]$ for $i = 1 \ldots n - 1$.

Note that we don’t define a separate output, only a result, or effect.

In today’s discussion we’ll assume that our input is an array whose elements are integers. We’ve already seen how to generalize to arbitrary user-defined types.
The insertion sort algorithm in pseudocode (from CLRS Chapter 2):

```plaintext
1 for j = 2 to A.length // A[1 .. A.length] is an array
2   key = A[j]
3   // Insert A[j] into the sorted sequence A[1 .. j - 1].
4   i = j - 1
5   while i > 0 and A[i] > key
6     A[i + 1] = A[i]
7     i = i - 1
8   A[i + 1] = key
```

Note the following conventions we use when describing algorithms abstractly:

- we use pseudocode instead of code in a particular programming language,
- the array indices start at 1 instead of 0, and
- the array has a property `length` so that we don’t have to specify the array’s size separately.
A loop invariant expresses a formal property of an algorithm that:

- is true prior to the first iteration of the loop,
- if it is true before an iteration of the loop remains true before the next iteration, and
- upon loop termination gives a useful property that helps show that the algorithm is correct.
A Loop Invariant for Insertion Sort

```
1 for j = 2 to A.length
2   key = A[j]
3   // Insert A[j] into the sorted sequence A[1 .. j - 1].
4   i = j - 1
5   while i > 0 and A[i] > key
6       A[i + 1] = A[i]
7       i = i - 1
8   A[i + 1] = key
```

At the start of each iteration of the for loop of lines 1-8, the subarray A[1 .. j - 1] consists of the elements originally in A[1 .. j - 1], but in sorted order.
Expressing Loop Invariants as assertions

Insertion sort in Java (note translation to 0-based indexes):

```java
for (int j = 1; j < a.length; ++j) {
    assert isSorted(a, 0, j - 1);
    int key = a[j];
    int i = j - 1;
    while(i >= 0 && a[i] > key) {
        a[i + 1] = a[i];
        i = i - 1;
    }
    a[i + 1] = key;
}
```

Note that we didn’t express the entire invariant in Java. We could, but you must trade off implementation effort and benefit. Run the program with the `-ea` switch to enable assertions:

```
$ java -ea InsertionSort
```

See [InsertionSort.java](#).
The search problem is defined formally by the following input-output specifications:

- **Input**: A sequence of \(n \) elements \(A = \langle a_1, a_2, \ldots, a_n \rangle \) and a value \(v \)

- **Output**: An index \(i \) such that \(v = A[i] \), or a special value such as -1 or \(\text{nil} \) if \(v \) does not appear in \(A \).

We’ll see that the assumptions we can make about the input affects the efficiency of the algorithms we can use to search it.
Linear Search

If we can make no assumptions about the order of the array, our only option is linear search:

```java
// A is an array, and v is the value we're searching for
LINEAR-SEARCH(A, v):
    for i = 1 to A.length
        if A[i] = v then
            return i
    return -1
```

We’ll be dealing with search algorithms abstractly for the purpose of discussing running time analysis, but example implementations are available in Search.java.
We can characterize algorithmic efficiency in terms of space complexity (how much storage an algorithm requires) or time complexity (how “fast” an algorithm runs). Almost always primarily concerned with time complexity.

- Note that we want to eliminate platform-specific factors, like speed of the particular computer an algorithm runs on.

So we characterize algorithm performance in terms of

- input size, \(n \), and
- order of growth as a function of input size.

An efficient algorithm beats an inefficient one even if the inefficient algorithm is run on a far superior computer.
Efficiency of Linear Search

Assuming each operation has a fixed cost, we can count the operations performed for a worst-case input as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Cost</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>for $i = 1$ to A.length</td>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>if $A[i] = v$ then</td>
<td>c_2</td>
<td>n</td>
</tr>
<tr>
<td>return i</td>
<td>c_3</td>
<td>0</td>
</tr>
<tr>
<td>return -1</td>
<td>c_4</td>
<td>1</td>
</tr>
</tbody>
</table>

Adding up the number of times each statement is executed we get:

$$T(n) = c_1n + c_2n + c_4 = (c_1 + c_2)n + c_4$$

We discard constant terms, constant factors, and lower-order terms to say that the worst case running time is

$$O(n)$$

And pronounce this “order n” or “Big-O of n.”
Binary Search

If the array is sorted you can use a binary search:

\[
\text{BINARY-SEARCH}(A, v): \\
p := 1, \ r := A.\text{length} \\
\text{while } p \leq r \\
\quad q := \lfloor (p + r)/2 \rfloor \\
\quad \text{if } A[q] = v \text{ then} \\
\quad \quad \text{return } q \\
\quad \text{if } A[q] > v \text{ then} \\
\quad \quad r := q - 1 \\
\quad \text{else} \\
\quad \quad p = q + 1 \\
\text{return } -1
\]

Intuitively: We check the midpoint of the array (q).

- If the array is empty (p > r), the query value was not found.
- If the midpoint holds the value, return the midpoint.
- If the midpoint holds a value greater than our search value, repeat the process with the lower half of the array.
- If the midpoint holds a value less than our search value, repeat the process with the upper half of the array.
The key to analyzing the efficiency of BINARY-SEARCH is realizing that the array is halved in each iteration of the while loop.

- In the worst case BINARY-SEARCH runs until the size of the array \((r - p)\) goes from \(n\) to 1 by successive halving.
- This is equivalent to going from 1 to \(n\) by successive doubling.

Counting the number of times \(x\) we need to double to get from 1 to \(n\) is

\[
2^x = n
\]

so

\[
x = \lg n
\]

and the worst-case running time of BINARY-SEARCH is

\[
O(\lg n)
\]
Efficiency of Insertion Sort (Worst Case)

<table>
<thead>
<tr>
<th>Step</th>
<th>Cost</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: for j = 2 to A.length</td>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>2: key = A[j]</td>
<td>c_2</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>4: i = j - 1</td>
<td>c_4</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>5: while i > 0 and A[i] > key</td>
<td>c_5</td>
<td>$\sum_{j=2}^{n} j$</td>
</tr>
<tr>
<td>6: A[i + 1] = A[i]</td>
<td>c_6</td>
<td>$\sum_{j=2}^{n} (j - 1)$</td>
</tr>
<tr>
<td>7: i = i - 1</td>
<td>c_7</td>
<td>$\sum_{j=2}^{n} (j - 1)$</td>
</tr>
<tr>
<td>8: A[i + 1] = key</td>
<td>c_8</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

Noting the sum of the arithmetic series $\sum_{1}^{n} x = \frac{n(n-1)}{2} = \frac{1}{2}n(n+1)$, adding the running times, simplifying, discarding constant terms and factors, and lower-order terms we get:

$$O(n^2)$$
Run-time Analysis Summary: Linear

Sample pseudocode:

```plaintext
for i := 1 to n
   // ...
```

Java implementation:

```java
for (int i = 0; i < n; i++) {
   // ...
}
```

Intuition:

- “For each of the \(n \) elements,” or “for \(n \) times.”

Big-O:

\[O(n) \]
Run-time Analysis Summary: Quadratic

Sample pseudocode:

```plaintext
for i := 1 to n
    for j := 1 to n
```

Java implementation:

```java
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // ...
    }
}
```

Intuition:

- “n times for each n”

Big-O:

\[O(n^2) \]
Run-time Analysis Summary: Also Quadratic

Sample pseudocode:

```plaintext
for i := 1 to n  
  for j := 1 to i
```

Java implementation:

```java
for (int i = 0; i < n; i++) {
  for (int j = 0; j < i; j++) {
    // ...
  }
}
```

Intuition:
- For each $i = 1..n$, count up to i
- This is sum of the the arithmetic series:
 $$\sum_{1}^{n} x = \frac{n(n-1)}{2} = \frac{1}{2}n(n+1) = \frac{1}{2}n^2 + \frac{1}{2}n$$

Big-O:
 $$O(n^2)$$
Run-time Analysis Summary: Logarithmic (1 of 2)

Sample pseudocode:

\[
p := 1, r := n \\
\text{while } p \leq r \\
\quad \text{// cut difference between } p \text{ and } r \text{ in half until it’s 0...}
\]

Java implementation:

```java
int lo = 0, hi = array.length - 1;
while (lo <= hi) {
    int middle = (lo + hi)/2;
    \quad \text{// either lo becomes middle + 1, or hi becomes middle - 1}
}
```

Intuition:

- Each iteration of the loop cuts the remaining input in half. We stop when we’ve cut the input size to 1.
- Mathematically, we’re multiplying the input size by \(\frac{1}{2} \) each time.
- Run-time is the number of times we multiply by \(\frac{1}{2} \)

Mathematically ...
Run-time is the number of times x we multiply by $\frac{1}{2}$:

$$\frac{1}{2^x} n = 1$$

$$\frac{1}{2^x} = \frac{1}{n}$$

$$2^x = n$$

$$x = \log_2 n$$

So Big-O is:

$$O(\log n)$$
Closing Thoughts

- Algorithms and data structures are two sides of the same coin
- Data structures affect the kinds of algorithms that can operate on the data
- Operations on data structures are defined by algorithms
- Abstract data types package data structures with their associated algorithms